常州创伟

CNOSS

CWD

CWD2

CWD3M88

CWD2208
Digital Stepper Drive

Descriptions:

The CWD2208 is a new generation digital 2-phase stepper motor driver, based on a 32-bit DSP processor, combination of the anti-resonance, low noise, micro-step and low temperature rise technology significantly improve the performance of the stepper motor, has low noise, small vibration, low temperature rise and high-speed torque. The driver use online adaptive PID technology, without manual adjustment can be automatically generated optimal parameters for different motors, and achieve the best performance.

Supply voltage range from 110VAC to 220VAC, suitable for driving various 2-phase hybrid stepping motors which phase current below 8.2A. The microstep can be set from full step to 51200steps/rev and the output current can be set form 2.2A to 8.2A; with automatic idle-current reduction, self-test, overvoltage, under-voltage and over-current protection.

Features:

- High-performance, low price;
- micro-step;
- Automatic idle-current reduction;
- Optical isolating signals I/O;
- Max response frequency up to 200Kpps;
- Low temperature rise, smooth motion;
- Online adaptive PID technology.

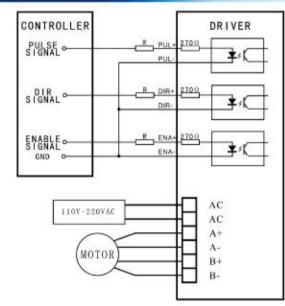
Applications:

Suitable for a variety of large-scale automation equipments and instruments. For example: labeling machine, cutting machine, packaging machine, plotter, engraving machine, CNC machine tools and so on. It always performs well when applied for equipment which requires for low-vibration, low-noise, high-precision and high-velocity.

Electrical Specifications

Parameter	Min	Typical	Max	Unit
Input Voltage(AC)	110	(4)	220	VAC
Output current	0	72.1	8.2	Α
Pulse Signal Frequency	0	150	200	KHZ
Logic Signal Current	7	10	16	MA

Current Setting


	100			
Peak	RMS	SW1	SW2	SW3
De	efault	off	off	off
2.2A	1.6A	on	off	off
3.2A	2.3A	off	on	off
4.5A	3.2A	on	on	off
5.2A	3.7A	off	off	on
6.2A	4.4A	on	off	on
7.3A	5.2A	off	on	on
8.2A	5.9A	on	on	on

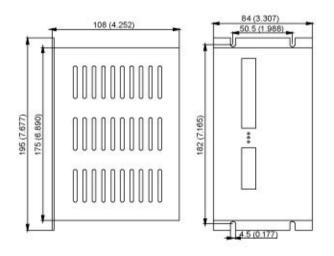
Standstill Current Setting:

SW4 is used for standstill current setting. OFF meaning that the standstill current is half of the dynamic current; and ON meaning that standstill current is the same as the selected dynamic current. Usually the SW4 is set to OFF, in order to reduce the heat of the motor and driver.

Microstep Setting: SW10 Step/Rev SW7 SW8 SW9 Default on on on on 800 off on on on 1600 off on on on off 3200 off on on 6400 on on off on 12800 off on off on 25600 off off on 51200 off off off on 1000 off on on on off off 2000 on on 4000 on off off on 5000 off off off on 8000 off off on on 10000 off off off 20000 on off off off 40000 off off off off

Typical Connection:

vcc	R	
5 V	0	
12V	680Ω	
24V	1.8ΚΩ	


Control Signal Connector:

	Control Signal connector
Name	Description
PUL+	Pulse signal positive
PUL-	Pulse signal negative
DIR+	Direction signal positive
DIR-	Direction signal negative
ENA+	Enable signal positive, usually left unconnected(enable)
ENA-	Enable signal negative, usually left unconnected(enable)

Power and Motor Connector:

AC	Power supply
AC	110V-220VAC
A+	Motor phase A
A-	
B+	Motor phase B
B-	

Mechanical Specifications:

unit: mm(inch),1 inch = 25.4mm

2